
When Crypto Goes Wrong

Erez Metula (CISSP), Founder

Application Security Expert

ErezMetula@AppSec-Labs.com

Breaking modern crypto is impractical...

� Suppose a device existed that could
brute-force a 56-bit key in 1 second

� It would take it 149.7 trillion years to
brute-force a 128-bit encryption key..

To motto of this presentation

� Most ciphers cannot be just cracked in a
seasonable time - but must we break it?

All our slides are made from real
ingredients

Real world examples collected from

day-do-day application penetration testing

Agenda

� Bad crypto awareness

�Unauthenticated encryption

�Direct access to cryptographic services

� Exposed hashes

� Insecure keys & wrong crypto schema

�Reply attacks

�Crypto-DOS

Bad Crypto Awareness

Home grown algorithms – seen too
many of these
public static string Encrypt(string textToEncrypt) {

}

public static string Encrypt(string textToEncrypt) {

StringBuilder inSb = new StringBuilder(textToEncrypt);

StringBuilder outSb = new StringBuilder(textToEncrypt.Length);

for (int i = 0; i < textToEncrypt.Length; i++) {

char c = inSb[i];

c = (char)(((c ^ 153)*2-3)^123); //data is XORed with some value

outSb.Append(c);

}

return outSb.ToString();

}

Frequency analysis
Frequency analysis

Outdated crypto

� Crypto, like food, can be expired

◦ Expired food can make you feel ill

◦ Expired crypto can make your data to be
exposed

� Examples: MD5, DES

� DEMO (md5 collision)

http://www.mscs.dal.ca/~selinger/md5collision/

Bad crypto modes

� Bad crypto is sometimes worse than not
doing crypto at all. It gives a false sense of
security

◦ Bad crypto algorithms & modes

◦ Example: good encryption (AES), bad mode (ECB)

Before

(cleartext)

After (AES

encryption

with ECB)

Unauthenticated Encryption – trusting the
other side

Forgetting to verify certificates

� Often caused by ignorance or by the usage
of self signed certs
TrustManager[] trustAllCerts = new TrustManager[]{ new X509TrustManager() {

public java.security.cert.X509Certificate[] getAcceptedIssuers() {return null;}

public void checkClientTrusted(java.security.cert.X509Certificate[] certs,

String authType) { }

public void checkServerTrusted(java.security.cert.X509Certificate[] certs,

String authType) { }

}};

Alice Bob

S

Public key?

{M}PKE

Public key?

PKE

P

Eve

S {M}PKB

PKB

P

JAVA

Forgetting to verify certificates
public static boolValidateRemoteCertificate(object sender,

X509Certificate certificate,X509Chain chain,SslPolicyErrors policyErrors) {

return true; //force any the certificate to be accepted

}

}

- (void)connection:(NSURLConnection *)connection
didReceiveAuthenticationChallenge:(NSURLAuthenticationChallenge *)challenge {

[challenge.sender useCredential:[NSURLCredential
credentialForTrust:challenge.protectionSpace.serverTrust]
forAuthenticationChallenge:challenge];

[challenge.sender
continueWithoutCredentialForAuthenticationChallenge:challenge];

}

.NET

Objective-C
(Iphone)

Forgetting to require https

� HTTPS provides the client with:
◦ Transport level encryption
◦ Server authentication (based on its cert)

� Breaking the encryption is hard, and
replacing the cert will probably fail

� But what happens if we fool it to accept
HTTP in the first place?

� DEMO (if time permits..)
SSLstrip

Direct access to cryptographic services

Direct access to server side crypto
functions

� Many times the crypto business logic is
exposed at the server side

◦ “Please encrypt/decrypt” my data !

� Some examples:
◦ http://app/GetEncriptionKey.asmx?messageId=3

◦ http://app/decryptData.jsp?block=51937456432651843

◦ http://app/getSignature.php?data=some_text_to_sign

Direct access to client side crypto
functions
� Often some kind of phishing is involved

◦ Client has some kind of client-side component
(example: activex) responsible for crypto

◦ Client is tricked into visiting the attacker’s site

◦ The attacker executes client’s crypto logic

Example – Exposed ActiveX crypto

interface IDataService : IUnknown {

…
virtual HRESULT Encrypt(BSTR* dataToEncrypt, BSTR* output) = 0;
virtual HRESULT Decrypt(BSTR* dataToDecrypt, BSTR* output) = 0;
…

};

Exposed hashes

User BUser A

Data

Data

Hash Value

Hash

Algorithm

Data

Hash Value

Hash Value

Hash

Algorithm

If hash values
match, data is valid

User A sends data and hash
value to User B

Sending hash values over an
insecure transport

Data

(Modified)Modified

ModifiedData
Data

(Modified)

Modified

Not using salts (and/or pepper!)

� Having sensitive values (such as passwords) stored
as hash is not enough

� Suppose the hashes are somehow stolen
◦ Network sniffing
◦ SQL Injection
◦ Insiders such as admin, DBA’s, etc.

� Hashes without any protection such as salt and/or
shared secret MAC (a.k.a “pepper”) are exposed to
various attacks

� DEMO (sha-1 dictionary attack)
http://www.victim.com/sqlinjectweb

Insecure keys & Bad selection of crypto schema

Leaving the key near the cipher data

Users

Balance

Audit

Encryption Keys

Unprotected encryption keys

� Stored in config files

� Can be exposed by remote file include
attacks

http://www.victim.com/SendPdf/WebForm1.asp
x?file=somefile.pdf

� ..or simply just stored in code

Same symmetric key for all clients

� Scenario:

◦ Legitimate client and server

◦ Messages are encrypted using
symmetric encryption

◦ Encryption key is the same
for all users

◦ Attacker who puts his hands
on the client side app can
intercept the communication

Same Asymmetric keys, different
deployments

� Scenario:
◦ Legitimate client and server
◦ Messages are encrypted using
an Asymmetric encryption
◦ Public-Private keypair is the
same for all deployments
� Think of 2 different organizations

◦ Attacker who puts his hands on
the server side app can expose
the private key
◦ He can now intercept
everything, for each
deployment out there..

Same keys, different encryption
needs
� Same encryption keys are used for
different encryption needs
◦ “one key does it all !!”
◦ Put all the data at risk, in case compromised

� Scenario:
◦ App can be tricked to encrypt/decrypt data of
type X where type Y is expected
◦ Often combined with chosen plaintext attacks

� DEMO

� http://owasp.victimsite.com/getboo/books.php?
folderid=CwsL%2BWGKzrc%3D

Reply attacks

Replying password hashes

� Scenario
◦ Login page displayed at some client side
application

◦ Passwords are saved as hash (example: in DB)

◦ Since passwords can be sniffed, the developer
“protects” the password by calculating a hash at
the client side before sending it to the server

◦ Login succeeds by comparing the received hash
to the stored hash

� But sniffed hash values are as good as the
password ☺

Replying important encrypted blocks

� Data is encrypted…

� But what happens in case the attacker
reply the same encrypted message again
and again?

� Well the message is legitimate ☺

encrypt

Combining unrelated encrypted blocks

� The application encrypts different values, each pretty
much protected by itself

� No correlation between the encrypted blocks

� The attacker combines unrelated legitimate encrypted
blocks and sends them to the application !

Crypto-DOS

Crypto-DOS

� Crypto often requires high computational
processing power

� We can abuse services making use of
crypto behind the scenes to DOS the
application

� DEMO – RSA DOS the application
by signing large amounts of data

http://www.victim.com/SignatureRSA/RSADoS.aspx

Summary

� In the real world, breaking the crypto
function itself is unlikely

� Crypto is often bypassed by exploiting a
flaw in the crypto mechanism

� Flaws are caused from various reasons –
from lack of awareness related to crypto
to logical flaws in the application design,
unrelated to crypto at all..

Erez Metula

ErezMetula@AppSec-Labs.com

Erez Metula

ErezMetula@AppSec-Labs.com

