When Crypto Goes Wrong

1001000I
oololio
olololl
01010100
I100IC0I

[1\

“We've devised a new security encryption code.
Each digit is printed upside down.”

Erez Metula (CISSP), Founder

Application Security Expert
ErezMetula@AppSec-Labs.com @ADDBFC

Application security [IlF=] =¥

Breaking modern crypto is impractical...

Key size in bitsl¥] Permutations

g
40
56
64
128
256

Suppose a device existed that could
brute-force a 56-bit key in 1 second

It would take it 149.7 trillion years to
brute-force a 128-bit encryption key..

58

.\i
i (] -
[N i L= =
oo

[I SN I R S
[t
L]
L= 1

Brute-force time for a device checking 256 permutations per second
0 milliseconds
0.015 milliseconds
1 second
4 minutes 16 seconds
149,745,258 642,898 years
50,955,671,114,250,100,000,000,000,000,000,000,000,000,000,000,000,000 years

D APRSec

wmme Application security [==}

To motto of this presentation

Most ciphers cannot be just cracked in a
seasonable time - but must we break it!

A CRYPTO NERD'S

1 IMAGINATION -

HIS LAPTOPS ENCRYPTED.
LETS BUILD A MILLION-DOLLAR,
CLOSTER TO CRACK \T-

NO GooD! IT'S
uo56 -BIT REN
BLAST! OUR
EVIL PLAN
1S FOILED! ™~

WHAT \WOULD
ACTUALLY HAPPEN:

H'S LAPTOP'S ENCRYPTED.
DRUG HIM AND HIT HIM WITH

THIS $5 WRENCH UNTIL
H'r".TU-'lS US THE PASSWORD.

GOT IT.

“/Q

Apphcamn security (W= =1

All our slides are made from real
ingredients

Real world examples collected from

day-do-day application penetration testing

Based on the true story

@App&ec

=mme Application securi ty

Agenda

Bad crypto awareness

Unauthenticated encryption

Direct access to cryptographic services
Exposed hashes

Insecure keys & wrong crypto schema

Reply attacks
Crypto-DOS

D APPSec

wmme Application security (W] =T

Bad Crypto Awareness

Home grown algorithms — seen too
many of these

(" public static string Encrypt(string textToEncrypt) { R

StringBuilder inSb = new StringBuilder(textToEncrypt);

StringBuilder outSb = new StringBuilder(textToEncrypt.Length);

for (inti = 0;i < textToEncrypt.Length; i++) {
char c = inSb[i];
c = (char)(((c ® 153)*2-3)7123); Il/data is XORed with some value
outSb.Append(c);

} 1.00%

return outSb.ToString();

12.00%
)

10.00% Frequency analysis

5.00%

5.00%

4.00%

“hl || I| | |

0.00% I - . I
W

a h ¢ d e f kI m n o p g 1 u

Outdated crypto

Crypto, like food, can be expired
Expired food can make you feel ill

Expired crypto can make your data to be
exposed

Examples: MD5, DES
DEMO (md5 collision)

@App‘_—ec

Application security (W= =Y=)

Bad crypto modes

Bad crypto is sometimes worse than not
doing crypto at all. It gives a false sense of
security

Bad crypto algorithms & modes
Example: good encryption (AES), bad mode (ECB)

Before
(cleartext)

| After (AES
! encryption
”\ with ECB)

simple

@App‘;—ec

Application security (W] =15

Unauthenticated Encryption — trusting the
other side

@App&ec

Application security (=] = 1=}

Forgetting to verify certificates

Public key?

Alice

|

PK¢

A

{M}PK,

Eve

> ’%&ﬁ' ¢ »««

Public key?

PKg

>
l

(M}PK,,

%)

Often caused by ignorance or by the usage

of self signed certs

TrustManager([] trustAllCerts = new TrustManager[]{ new X509TrustManager() {
public java.security.cert.X509Certificate[] getAcceptedlssuers() {return null;}
public void checkClientTrusted(java.security.cert.X509Certificate[] certs,

String authType) { }

public void checkServerTrusted(java.security.cert.X509Certificate[] certs,

D APRSec

wmme Application security (W= ==

1h

String authType) { }

JAVA

Forgetting to verify certificates

NET

public static bool ValidateRemoteCertificate(object sender,

X509Certificate certificate,X509Chain chain,SslIPolicyErrors policyErrors) {

return true;//force any the certificate to be accepted

- (void)connection:(NSURLConnection *)connection
didReceiveAuthenticationChallenge:(NSURLAuthenticationChallenge *)challenge {

[challenge.sender useCredential:[NSURLCredential
credentialForTrust:challenge.protectionSpace.serverTrust] Objective-C
forAuthenticationChallenge:challenge]; (Iphone)

[challenge.sender
continueWithoutCredentialForAuthenticationChallenge:challenge];

D APRSec

= Application security (=] =1=]

Forgetting to require https
HTTPS provides the client with:

Transport level encryption
Server authentication (based on its cert)

Breaking the encryption is hard, and
replacing the cert will probably fail
‘a There is a problem with this website's security certificate

But.\./.\:/hé{happens if we fool it to accept
HTTP in the first place?

DEMO (if time permits..) N\ ADDSec
SSLStI"iD —D- Application security (WE=] =Y=3

Direct access to cryptographic services

@App&ec

Application security (=] = 1=}

Direct access to server side crypto
functions

» Many times the crypto business logic is
exposed at the server side

> “Please encrypt/decrypt” my data !
» Some examples:

o http://app/GetEncriptionKey.asmx?messageld=3
o http://app/decryptData.jsp?block=51937456432651843
o http://app/getSignature.php/data=some_text to_sign

@Appsec

Application security [IlF=] =¥

Direct access to client side crypto

functions

Often some kind of phishing is involved

Client has some kind of client-side component

(example: activex) responsible for cry
Client is tricked into visiting the attac

The attacker executes client’s crypto

pDto

ker’s site

ogic

D APRSec

wmme Application security [==}

Example — Exposed ActiveX crypto

interface IDataService : IlUnknown {

virtual HRESULT Encrypt(BSTR* dataToEncrypt, BSTR* output) = 0;
virtual HRESULT Decrypt(BSTR* dataToDecrypt, BSTR* output) = 0;

L Victim's Web APP
’ Browser
| ActiveXx
ActiveX : JsS
J‘:/
- var myohject;
myobject = new
JS ActiveXObject"DataService");

myobjecl decrypl{value);

Attacker's @ AD DS?C

Website Application security [W=] ==

Exposed hashes

@App&ec

Application security (=] = 1=}

Sending hash values over an
Insecure transport

p N b
User A User B
Data Hash LELJ
= Algorithm e Hash Value
fae | -|ﬁ_|_l iq
I"'-_l-.l |1 [

If hash values

AEB match, data is valid

Algorithm

f’%

== |
L_:::I)Hash Value

@i

8w LR

AppSec

Application security (W= =Y=)

e &

)/

Not using salts (and/or pepper!)

Having sensitive values (such as passwords) stored
as hash is not enough
Suppose the hashes are somehow stolen

Network sniffing
SQL Injection
Insiders such as admin, DBA’s, etc.

Hashes without any protection such as salt and/or
shared secret MAC (a.k.a “pepper’”) are exposed to
various attacks

DEMO (sha-l dictionary attack)

D APRSec

wmme Application security (W= ==

Insecure keys & Bad selection of crypto schema

@App&ec

Application security (=] = 1=}

Leaving the key near the cipher data

Users
Usernane | passaord | counkry
david v ZREFIMEROLIZ. .. LISA

john v MOML Israed

richasl v | ODEAOTdkeZE= ...

Encryption Keys

Balance . | Bncryprionkesy
account | balance password o IiDwmefkjassa3d., ..
1 Lo MTRSHR= . AR = o S5 55
z c\o OTAZODC=E ' 20bFadfss
3 v MZIZMDU=

Audit

id _d-hl:-u

NTOINRIMzG1 Mzvy

Z v Nic1ODg3OWhnZnF3Z TOMiUZMDYgaGdmomy Jcmiy SRy ZRRlcmU= - L., Dll‘ \DDSFC

=== Application security (=] =1

Unprotected encryption keys

Stored in config files

Can be exposed by remote file include
attacks

..or simply just stored in code

String secret = "1kre943yu943ujf";
byte[] key = key.getBytes();

Cipher c¢ = Cipher. getInstance("AES“)'
SecretkKeyspec k = new Secretkeyspec(key, "AES");
c.ini1t(Cipher.ENCRYPT_MODE, k);

byte[] encryptedData = c.doFinal(dataTosend);

Same symmetric key for all clients

Scenario:

Legitimate client and server

Messages are encrypted using

symmetric encryption T ““—Tﬁ]
Encryption key is the same
for all users ‘
Attacker who puts his hands ‘
on the client side app can gt |
| ey |

intercept the communication

D APPSeC

= Application security (=] =1=]

Same Asymmetric keys, different
deployments

Scenario:
Legitimate client and server

Messages are encrypted using e
an Asymmetric encryption

Public-Private keypair is the Pusic B A Private |
ey i 1| Key

same for all deployments |

* Think of 2 different organizations Giiont S

Attacker who puts his hands on
the server side app can expose [Same keysT]

the private k.ey e
He can now intercept

everything, for each Putie | g
deployment out there.. ey | (| Key

Client Server
—

.) e |

Same keys, different encryption

needs
Same encryption keys are used for
different encryption needs

“one key does it all !!”
Put all the data at risk, in case compromised

Scenario:

App can be tricked to encrypt/decrypt data of
type X where type Y is expected

Often combined with chosen plaintext attacks

DEMO

D APRSec

wmme Application security (W= ==

Reply attacks

@App&ec

Application security (=] = 1=}

Replying password hashes

Scenario

Login page displayed at some client side
application
Passwords are saved as hash (example:in DB)

Since passwords can be sniffed, the developer
“protects” the password by calculating a hash at
the client side before sending it to the server

Login succeeds by comparing the received hash
to the stored hash

But sniffed hash values are as good as the
password ©

D APRSec

wmme Application security (W= =Y

Replying important encrypted blocks

vdadkyoDNiGgouvLYHHgygrukLcEWHC
sHRVrapazOScxsDulsLWPQyDWahMdvbln
famHEsXox:asSC2EECWQeCyj+olblKyTC
sTransaction = sBaxMU1uTEMnJalHHzZO A Db Z12uz) mrgd Gl

J pttkIrAOHE OqMCFXIS0N sV +Moby1 CyKaop
<5ou F:CE ?-5-.2 8747442 < ! Sou FCE:?- . STeEWPXzkvussrttimnzrerFzgtH eszMs L LIC
<Destination=9837611 < /Destination= VdzUU nagzDwRdGIsrTEzpacApuVcjQyshS.

I - EsroGITd)ZxmwlSsPisDlsalyHboddAdesSL
. <Amo Lllnt:} lﬂﬂﬂﬂ$ = Amount: maequaHuioYkLxz2+QqBMcoM++drBePYozt
< /Transaction= KNcSxsPo+7bArgsjULorsYQsusl faNcbBazif

ueYbHAsgMabDhFnsZ1ipaoClafoaqBMNMGS?
CwEyIBErqs OBkxPJIGEomouA+olKe+Pclo

Data is encrypted...

But what happens in case the attacker

reply the same encrypted message again

and again?

Well the message is legitimate ©
@App‘;—.@c

Application security (=] ==

Combining unrelated encrypted blocks

The application encrypts different values, each pretty
much protected by itself

No correlation between the encrypted blocks

The attacker combines unrelated legitimate encrypted
blocks and sends them to the application !

“Dollar” encrypted “Euro” graph ID

= C | ® http://somesite.com,/showdetails.php ¥

US Dollar Index #77.69

143,00
\ 141,14
e ™

= \ \ 13929
\ | 13743

135,57

133.71

]
\ 131.86
\ 1321
| >
Y50 oo T _abs

Crypto-DOS

@App&ec

Application security (=] = 1=}

Crypto-DOS

Crypto often requires high computational
processing power

We can abuse services making use of
crypto behind the scenes to DOS the
application

DEMO - RSA DOS the application
by sighing large amounts of data

D APRSec

= Application security [W=] =1

Summary

In the real world, breaking the crypto
function itself is unlikely

Crypto is often bypassed by exploiting a
flaw in the crypto mechanism

Flaws are caused from various reasons —
from lack of awareness related to crypto
to logical flaws in the application design,

unrelated to crypto at all..

@Appsec

wmme Application security

Questionsy

Erez Metula
ErezMetula@AppSec-Labs.com

@App&ec

Application security (=] =1

ThankYou !

Erez Metula
ErezMetula@AppSec-Labs.com

@App&ec

Application security (=] =1

