

 Embedded/Connected Device

Secure Coding

4-Day Course

Syllabus

Embedded/Connected Device Secure Coding
4-Day Course

Course description

Secure Programming is the last line of defense against attacks targeted toward our systems.
This course shows you how to identify security flaws & implement security countermeasures
in different areas of the software development lifecycle and apply these skills to improve the
overall quality of the products and applications. Using sound programming techniques and
best practices, in addition to understanding and practicing the capabilities of the potential
hacker, as shown in this course, you can produce high-quality code that stands up to attacks.

The course covers major security principles in C/C++, software, and hardware vulnerabilities
caused be unsecure coding and practices. The course also cover common tools and
techniques used against embedded/connected devices. The objectives of the course are to
acquaint students with security concepts and terminology, and to provide them with a solid
foundation for developing software using the best practices in C/C++. By course completion,
students should be proficient in secure programming and have learnt the basics of security
analysis and design. Students should then be able to develop, design and maintain a secure
product, using security methods and techniques for the C/C++ language and in the IoT world.

Target audience

Members of the software development team:

 C / C++ Developers
 Designers & Architects

Prerequisites

Before attending this course, students should be familiar with:

 C/C++ language
 Background in memory management
 Background in OS mechanisms

Course topics
Day 1

Information gathering

 Device Unpacking
 PCB Analysis
 Data Sheets
 FCC

Serial and Connections

 Identifying Inputs
 Bus Pirate
 GoodFET
 Getting Console/Shell

Debug

 Using Logic Analyzer
 Signal Monitoring
 Digital Decoding
 JTAG Overview
 Jtagulator
 OpenOCD
 JTAG Debugging

Availability

 Application/OS crash
 CPU/Memory starvation
 Resource starvation
 Triggering high network bandwidth
 User level DOS
 Concurrency & Race conditions
 Race window/objects
 Mutual Exclusion
 Deadlock
 Time of Check/Time of Use (TOCTOU)
 Files as Locks and temporary files
 Symbolic link attacks
 Using atomic operations

 Hands-on Labs

Day 2

Buffer Overflows and Code Injections

 Stack Overflows attacks
 Heap overflows attacks
 Array indexing attacks
 Format strings attacks
 Secure vs. Insecure API’s
 Stack guards
 Compiler checks
 Better ways to manipulate strings and buffers

Integer Overflows

 Integer / Double overflows
 Integer conversion rules
 Signed and unsigned problems
 Safe integer usage
 Enforcing limits on integer values
 Preventing lost or misinterpreted data due to conversion
 Using secure integer libraries

Safe API

 Banned APIs
 Real-World Risks
 Using safe API’s
 The ‘n’ Functions
 Detecting Dangerous APIs
 Alternatives
 StrSafe

Secure Memory Usage
 Secure memory handling
 Erasing Data
 Secure pointer usage
 Memory Dumps
 Use smart pointers for resource management
 Ensure pointer arithmetic
 Avoid null pointer dereferencing
 Ensure sensitive data is not paged to disk

 Hands-on Labs

Day 3

Network Security

 Network attacks
 Insecure Services
 Application Layer Threats and attacks
 Traffic sniffing
 Traffic manipulations
 Man-in-the-Middle
 Avoiding Server Socket Hijacking
 Firewall Friendly application

Cryptography

 Introduction to cryptography
 Symmetric encryption
 Asymmetric encryption
 ECC
 Transport Level encryption
 Storage Level encryption
 The problem with Crypto in IoT
 Lightweight cryptography

Secure Coding Tips

 Prefer Streams to C-Style Input and Output
 Avoid defining macros
 Do not ignore values returned by functions or methods
 Secure defaults and initializations
 Security principles
 Hardcoded secrets
 Static Code Tools

Integrating security into the development lifecycle

 Hands-on Labs

Day 4

Flash & Chip Manipulations

 Using a Device Programmer
 Connecting using SPI and I2C
 In-circuit Connection
 Pulling off the Chip
 Dumping the Content of a Chip
 Patching Flash Content
 Uploading a Modified Binary to Chip

Firmware Analysis
 Getting the Device Firmware
 binwalk
 Reversing the Binary with IDA
 Patching
 Bypassing Limitations
 Uploading Modified Firmware

Anti-Reversing

 Eliminate “symbolic info”
 Obfuscate the program
 Code Encryption
 Use anti-debugger tricks
 Code Checksums
 Confusing a Disassembler
 Inlining and Outlining sensitive code
 Interleaving Code

 Hands-on Labs

	Day 1
	Day 2
	Day 3
	Day 4

