
.NET Secure Coding for

Client-Server
Applications

4-Day hands on Course

Course Syllabus

Secure programming is the last line of defense against attacks targeted toward our

systems. This course shows you how to identify security flaws & implement security

countermeasures in different areas of the software development lifecycle and apply

these skills to improve the overall quality of the products and applications.

Using sound programming techniques and best practices shown in this course, you can

produce high-quality code that stands up to attack. This course covers major security

principles in the .NET framework, programming vulnerabilities and specific security

issues in desktop WPF application coupled with WS backend.

The objectives of the course are to acquaint students with security concepts and

terminology, and to provide them with a solid foundation for developing software using

the best practices in the .NET framework. By course completion, students will be

proficient in secure programming and have learnt the basics of security analysis and

design. Students should then be able to develop, design and maintain applications using

security methods and techniques using the .NET framework advanced security features.

Members of the software development team:

 .NET Client Side and Server Side developers
 Designers & architects.

Before attending this course, students should be familiar with:

 .NET background using C# (preferred) or VB.NET
 IIS, Databases (SQL Server) & SQL language

1: Day

Introduction to Application Security

 Security should be considered during the entire application lifecycle
 Design Level Attacks
 Implementation Level Attacks
 Deployment Level Attacks
 Handling Risks
 Security assumptions
 Thinking like attackers
 Structural security
 Segmentation
 Layered security
 Stand-alone security
 Principle of least privilege
 Fail securely
 Transparency, ease of use
 Secure input validation
 Sanitize Application Output
 Data protection
 OS security mechanisms

.NET Authentication

 Authentication scenarios and protocols
 Password based authentication
 Protecting user accounts passwords
 Implementing Windows authentication
 WS authentication scenarios
 Relationship between IIS and ASP.NET.
 Impersonation
 Delegation
 Lab - Implementing authentication in .NET applications by using a variety of

methods

.NET Authorization

 Introduction to authorization models
 Role Based Access Control (RBAC)
 OS ACL authorization
 WS authorization scenarios
 Membership provider & role manager
 Least privileged approach
 Lab - Implementing authorization in .NET applications by using a variety of

methods

Day 2:

.NET Input Validation

 What is considered Input?
 The need for input validation
 Client side VS. server side validations
 Black list VS. white list validation

 String manipulation and comparison
 Data type conversion
 Regular expressions
 WCF input validation
 Lab - Validating user input in .NET applications

.NET Secure File Handling

 Path traversal
 Canonicalization problem

 Virtual path mapping using MapPath

 Sanitizing file names using GetFullPath

 Uploaded files backdoors

 File extension handling

 Isolated storage

 File ACLs
 Lab – secure file handling

.NET Cryptography

 Introduction to cryptography
 Avoiding weak “encryption”
 Symmetric encryption
 Asymmetric encryption
 Hashing
 Digital signatures
 Certificates
 The certificate store
 Transport level encryption
 Storage level encryption
 DB encryption
 Protecting sensitive strings with SecureString
 Key derivation
 Password vault
 Using DPAPI (Data Protection API)

 Lab- Implementing cryptography in .NET applications.

Day 3:

Transport, Web Services & WCF Security

 REST & SOAP overview
 Security and web services
 Common WS threats and vulnerabilities
 WCF security mechanisms
 Sensitive information transmission
 Transport level security
 Message level security
 Validating certificates and avoiding man-in-the-middle
 SSL Pinning
 Lab - Implementing security in WCF web services

Application Denial of Service Vulnerabilities

 Application / OS crash
 CPU starvation

 Memory starvation

 File system starvation

 Resource starvation
 Resource locking

 Triggering high network bandwidth

 User level DoS

 Exploiting a specific vulnerability to cause DoS
 Lab – Preventing DoS attacks

.NET Secure Configuration Management

 Securing back-end communications
 Protecting connections strings

 Disable debugging

 Disable tracing
 Protecting server runtime environment
 Implementing least privileged approach for DB
 Secure compilation
 Secure deployment
 Lab – secure configuration management

:Day 4

.NET Error Handling

 Why exposing detailed error messages is bad
 Structured Exception Handling – Try, Catch, Finally
 The Fail-Open VS. Fail-Close approach
 Configuring error handling in web.config
 Creating custom error pages
 HTTP error codes
 Level of application error handling
 Handling Runtime Security Errors
 Error handling strategies
 WCF error handling
 Lab - how to securely handle runtime errors using the .NET framework and

Windows mechanisms.

.NET Auditing & Logging

 Importance of logging
 What should we audit?
 Event message structure

 Logging best practices
 Built-in logging technologies in .NET

 WCF logging options

 Windows event log

 Performance monitor

 Windows Management Instrumentation (WMI)

 The logn4net framework
 Lab - Implementing auditing in .NET applications by using a variety of

methods

EXE Reverse Engineering and code protection

 The problem of reversing & decompilation
 Assume attackers have source code
 Introduction to MSIL & the CLR
 Debugging
 Patching
 Unpacking
 Obfuscation
 Avoiding hard coded secrets
 Secure serialization
 Lab

